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Introduction

e High-fidelity 3D assets are core components of 3D simulation soft-
wares like — Unreal Engine, Carla, GeoSIM etc.

Given raw sensory data, we first utilize deep encoder as a robust initializer for
the shape code. The shape-code is then optimized through the auto-decoder
framework, in presence of discriminator-induced high-dimensional shape prior.

e Current deep implicit modeling approaches are:

— Expressive 1.

— Easy to learn
— Generate high-resolution reconstructions

— Do not perform well on real-world sparse observations.

Input: Real world data Output: High-definition 3D object shape

e QOur approach learns strong shape pri-
ors from synthetic data and adapts
them to generate high-quality shapes

in the wild. e > = 2. Test-time Optimization of shape latent-code.
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Robust to noise

X Low-quality reconstructions to unseen inputs
X Unstable to latent-code initializations

X Lack of global shape consistency

Test-time optimization

Repeat (2), (3)
3) Optimize code

(1) Robust initializer (2) Estimate SDF (decode into 3D shape)
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Instance-specific prior  Category-specific prior High Dimensional prior

Image GT DIST  Ouwurs + LiIDAR  GT DIST  DIST++ Ouwurs
Challenges of DeepSDF
Input LiDAR 3D reconstruction from different initializations Input LiDAR (truck) Output (van? truck?) Method ACD (mm) \L Recall (0/0) T Method ACD (mm) i Recall (0/0) T
DIST 62.97 48.82 DIST 23.40 71.99
Ours 8.89 84.32 DIST++ 17.52 72.65
Ours 5.36 89.05

(1) Instability

(ii) Low-fidelity

Robust Initialization of shape latent-code.

(1) Robust initializer
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L Instance-specific prior ~ Category-specific prior
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. Advesarial Curriculum Learning Strategy: To allow each component
encode rich shape priors, we proposed a multi-stage learning strategy.
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