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Introduction
• High-fidelity 3D assets are core components of 3D simulation soft-

wares like – Unreal Engine, Carla, GeoSIM etc.

• Current deep implicit modeling approaches are:
– Expressive
– Easy to learn
– Generate high-resolution reconstructions

– Do not perform well on real-world sparse observations.

• Our approach learns strong shape pri-
ors from synthetic data and adapts
them to generate high-quality shapes
in the wild.
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Related Work

✅ Robust to noise
❌ Low-fidelity with GT at test-time, 
leading to smoother shapes

✅ Robust to noise
❌ Low-quality reconstructions to unseen inputs
❌ Unstable to latent-code initializations
❌ Lack of global shape consistency

Deep Optimization approaches (DeepSDF, DIST etc.) 

Feed forward approaches (ONet, IMNet, etc.) 

Ours

Issues with Prior work

Fig. 2: Challenges of DeepSDF
Failure Case 1: Same input results in different 

shapes by just changing init

Failure Case 2: observe a truck output a 
SUV or something
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(i) Instability

Challenges of DeepSDF

3D reconstruction from different initializations

(ii) Low-fidelity

Mending Neural Implicit Approaches
Given raw sensory data, we first utilize deep encoder as a robust initializer for
the shape code. The shape-code is then optimized through the auto-decoder
framework, in presence of discriminator-induced high-dimensional shape prior.

1. Robust Initialization of shape latent-code.

2. Test-time Optimization of shape latent-code.

3. High-dimensional learned shape prior during training and optimization.

4. Advesarial Curriculum Learning Strategy: To allow each component
encode rich shape priors, we proposed a multi-stage learning strategy.
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Method ACD (mm) ↓ Recall (%) ↑
ONet 22.76 49.56
GRNet 12.70 77.59
SAMP 176.42 65.58
DIST 19.55 71.54
DIST++ 17.29 72.50
DeepSDF 8.34 84.71
Oursno-finetune 7.02 86.48
Oursfinetune 5.93 88.18
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Method ACD (mm) ↓ Recall (%) ↑
DIST 62.97 48.82
Ours 8.89 84.32

Method ACD (mm) ↓ Recall (%) ↑
DIST 23.40 71.99
DIST++ 17.52 72.65
Ours 5.36 89.05


