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Abstract

This supplementary material provides more details
and thorough analysis of our deep pruner model. We
hope the readers can gain more insights into our effi-
cient stereo matching approach. We first quantitatively
evaluate the effectiveness of our uncertainty estimation
in Sec. 1. Next, we visualize the predicted confidence
range under various scenarios and demonstrate how un-
certainty can improve the overall quality of point cloud
aggregation in Sec. 2. Finally, we provide the network
architecture as well as the training details in Sec. 3
and Sec. 4. Alongside this material, we also provide a
video to showcase the qualitative results of our model
on KITTI Odometry dataset.

1. Quantitative Uncertainty Estimation
To assess the correlation between the predicted un-

certainty and the outliers, we prune the uncertain pix-
els sequentially, starting from pixels whose confidence
range is large (i.e., more uncertain), and re-compute
the metric. As shown in Fig. 1, our best model and
our fast model reduces the outliers ratio by 38% and
27% respectively after removing 6% of the uncertain
pixels.

2. Qualitative Uncertainty Estimation
To gain more insights into our predicted uncertainty,

we visualize the confidence bound and the predicted
disparity along a particular scanline for different im-
ages. As shown in Fig. 2, the confidence bound (un-
certainty) is small for most pixels. We also compare
the predicted disparity and uncertainty between our
best model and our fast model in Fig. 3. As expected,
our best model is able to predict better and sharper
uncertainty modes at the edges compared to the fast
model.

To further showcase the effectiveness of the pre-
dicted uncertainty, we exploit it to improve the quality
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Figure 1: Outliers (%) vs Uncertain Pixel removal (%).
Each dot in the plot refers to one particular threshold
that we used to define uncertainty. Specifically, if the
confidence range of a pixel is larger than the thresh-
old, we treat such pixel as uncertain pixel and prune it
out. The threshold value monotonically decrease from
the left to the right, with the first dot representing the
maximum possible disparity and the last dot represent-
ing a threshold of 3.

of 3D point cloud aggregation. Specifically, we project
the certain pixels to 3D using the estimated disparities
and aggregate them with ground truth poses from the
KITTI Odometry dataset. As shown in Fig. 4, pruning
uncertain pixels drastically reduce the smearing effect
that happens frequently at the object boundaries.

Samples in PatchMatch Inference All(%)
(before CRP) Runtime bg fg all
9-samples 141 ms 1.75 3.0 1.95
11-samples 152 ms 1.6 3.2 1.85
14-samples 172 ms 1.6 2.9 1.8

Table 1: Quantitative Results vs PatchMatch Samples.
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Figure 2: Qualitative results on KITTI 2015 validation set.(best-model) 2 blocks of visualizations, where each block
contains(from top to bottom): input, gt, our prediction, our confident range prediction along the green horizontal
scanline as marked in the RGB images.

3. Model Architecture
In this section, we describe the detailed architecture

of the proposed model, starting from the overall archi-
tecture to each module.

3.1. Overall Architecture

We present the full end-to-end architecture in
Tab. 2. There are two major differences between ‘ours-
best’ model and ‘ours-fast’ model. Specifically, scale
‘S’ in Tab. 2 is set to 4 for ’ours-best’ and 8 for ‘ours-
fast’. Also, unlike ‘ours-best’, we adopt the refinement
module at 2 different scales (×2 and ×4) in a coarse-to-
fine manner for ‘ours-fast’ model. Next we will discuss
detailed implementation for each component to ensure
the reproducibility.

3.2. Feature Extractor

The detailed architecture of the Feature Extractor
is shown in Tab. 3. The main difference between ‘ours-
fast’ and ‘ours-best’ model lies in the feature extrac-
tor. The output resolution of the fast model is half
of the best model. This is achieved by breaking down
the RB3 residual block into one down-sampling block
and two residual blocks at the same resolution (similar
to residual blocks RB2_1 and RB2_2). Furthermore,
since the receptive filed is automatically enlarged by re-
ducing the feature-scale for ‘ours-fast’, we remove the
SPP1 branch and reduce the dilation of the last resid-
ual block to 1. We note that unlike the best model,
the feature extractor of the fast model outputs feature
maps at 3 different scales. “ConvBn” in the tables
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Figure 3: Qualitative comparison between best and fast models on KITTI 2015 validation set. (From top to
bottom:) input, gt, our prediction, our confident range prediction along the green horizontal scanline as marked
in the RGB images.

Using all Pixels After removing ”Uncertain” Pixels

Figure 4: 3D maps created from concatenated point clouds across multiple frames of KITTI Odometry sequence
7.

refers to a Convolution operation followed by a Batch-
Norm and a LeakyReLU (α = 0.1) layer. We do not use
BatchNorm and LeakyReLU for the last convolution
layer in the hourglass blocks and refinement network.

3.3. HourGlass Block

We revisit the detailed computation graph of a hour-
glass block [3] in Table 5. It is a crucial component used
in Confidence Range Predictor and the Cost Aggrega-
tor of the proposed model. F in the table refers to the
number of input features, with F = 16 in our model.
The depth dimension is decided by the input number
of intervals/samples drawn in the previous PatchMatch
stage, in which D1 = 14 and D2 = 9.

3.4. PatchMatch

We discuss the implementation details of the dif-
ferentiable PatchMatch module. For propagation, we
adopt spatial separable one-hot filters as shown in
Fig. 3 in the main paper. We unroll PatchMatch two
times for each stage, with 14 samples in stage-1 and
9 samples in stage-2. The intuition behind this choice
is that we want to ensure diversity at the beginning
of the search in stage-1 while improving computational
efficiency at stage-2 when the model is more certain.
We show the performance and runtime on KITTI w.r.t.
# of samples in PatchMatch stage-1 in Tab. 1. We ob-
serve that by reducing 5 samples in stage-1, we can
improve the speed by 30ms at the minimal cost of in-
creasing the outliers ratio by 0.15%.
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Input Layer Type Layer Description Output Dimensions
Left-Image FeatureExtractor LeftFeat,LF2 H/S ×W/S × 32
Right-Image FeatureExtractor RightFeat,RF2 H/S ×W/S × 32

PatchMatch Stage-1
LeftFeat, RightFeat PatchMatch PM-Samples H/S ×W/S ×D1

Min-Max-Disparity Predictor
PM-Samples

Concat PM1 D1 ×H/S ×W/S × FCRPLeftFeat
RightFeat (FCRP = 65)

PM1 ConvBn3d [64× FCRP × 1× 3× 3] CRP1 D1 ×H/S ×W/S × 64
CRP1 ConvBn3d [32× 64× 1× 3× 3] CRP2 D1 ×H/S ×W/S × 32
CRP2 ConvBn3d [16× 32× 1× 3× 3] CRP3 D1 ×H/S ×W/S × 16
CRP3 ConvBn3d [16× 16× 1× 3× 3] CRP4 D1 ×H/S ×W/S × 16

CRP4 HourGlass Hourglass(CRP4, PM1)
MinDisp H/S ×W/S × 1
MinFeat H/S ×W/S ×D1

MinConf H/S ×W/S ×D1

CRP4 HourGlass Hourglass(CRP4, PM1)
MaxDisp H/S ×W/S × 1
MaxFeat H/S ×W/S ×D1

MaxConf H/S ×W/S ×D1

PatchMatch Stage-2
LeftFeat, RightFeat PatchMatch PM-Samples-2 H/S ×W/S ×D2

Cost-Aggregator
PM-Samples-2

PM2 D2 ×H/S ×W/S × FCALeftFeat, RightFeat Concat
MinFeat MaxFeat (FCA = 93)

PM2 ConvBn3d [64× FCA × 1× 3× 3] CA1 D2 ×H/S ×W/S × 64
CA1 ConvBn3d [32× 64× 1× 3× 3] CA2 D2 ×H/S ×W/S × 32
CA2 ConvBn3d [16× 32× 1× 3× 3] CA3 D2 ×H/S ×W/S × 16
CA3 ConvBn3d [16× 16× 1× 3× 3] CA4 D2 ×H/S ×W/S × 16

CA4 HourGlass Hourglass(Input, PM2)
CADisp H/S ×W/S × 1
CAFeat H/S ×W/S ×D2

CAConf H/S ×W/S ×D2

CADisp Upsample Biliner + Conv2d[1× 5× 5] 2H/S × 2W/S × 1 CADisp
CAFeat Upsample Biliner + Conv2d[D2 × 5× 5] 2H/S × 2W/S ×D2 CAFeat

Refinement
CAFeat Concat RFC0 2H/S × 2W/S × FRM

LF2, CADisp (FRM = 42)
RFC0 ConvBn2d [32× FRM × 3× 3] RFC1 2H/S × 2W/S × 32
RFC1 ConvBn2d [32× 32× 3× 3] RFC2 2H/S × 2W/S × 32
RFC2 ConvBn2d [32× 32× 3× 3] RFC3 2H/S × 2W/S × 32
RFC3 ConvBn2d [16× 32× 3× 3] RFC4 2H/S × 2W/S × 16
RFC4 ConvBn2d [16× 16× 3× 3] RFC5 2H/S × 2W/S × 16
RFC5 ConvBn2d [16× 16× 3× 3] RFC6 2H/S × 2W/S × 16
RFC6 Conv2d [1× 16× 3× 3] RFC7 2H/S × 2W/S × 1
RFC7 Ele-wise Addition CADisp + ReLU(RFC7) RefinedDisp∗ 2H/S × 2W/S × 1CADisp

Table 2: Overview of the proposed architecture

4. KITTI Dataset Training Details

Following [4], we leverage all available image pairs
from KITTI 2012 [1] & KITTI 2015 [2] (394 images in
total). We held out 40 images from KITTI 2015 for
validation. All experiments are cross-validated across
5 folds. We adopt different learning rate (lr) scheduler
according to the number of samples in the PatchMatch
module. Specifically, for 9-samples model, we use an
initial lr of 7 × 10−5 and reduce it to 3 × 10−5 after
500 epochs, while for 14-samples we use an initial lr of

10−4and reduce it to 5× 10−5 after 500 epochs.

5. Supplementary Video
We also include a supplementary video to showcase

the qualitative results. Specifically, we run the pro-
posed stereo estimation model over one of the KITTI
Odometry sequence (sequence 7). As demonstrated in
the video, our model produces high-quality disparity
estimation. Most of the “uncertain” regions happen at
significant object boundaries (e.g. boundary of the ve-
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Input Layer Type Layer Description Output Dimension Layer Tag
Image ConvBn2d [ 32× 3× 3× 3 ] H/2×W/2× 32 C1
C1 ConvBn2d [ 32× 32× 3× 3 ] ×2 H/2×W/2× 32 C2

C2 ConvBn2d
[
32× 32× 3× 3

]
×3 H/2×W/2× 32 RB1

32× 32× 3× 3

RB1 ConvBn2d
[
64× 32× 3× 3

]
×3 H/4×W/4× 64 RB2_1

64× 64× 3× 3

RB2_1 ConvBn2d [ 64× 64× 3× 3 ] ×15 H/4×W/4× 64 RB2_2

RB2_2 ConvBn2d
[
128× 128× 3× 3

]
×3 H/4×W/4× 128 RB3

128× 128× 3× 3

RB3 ConvBn2d (dilation=2)
[
128× 128× 3× 3

]
×3 H/4×W/4× 128 RB4

128× 128× 3× 3

RB4 SPP-Block(64) H/4×W/4× 32 SPP_1
RB4 SPP-Block(32) H/4×W/4× 32 SPP_2
RB4 SPP-Block(16) H/4×W/4× 32 SPP_3
RB4 SPP-Block(8) H/4×W/4× 32 SPP_4

SPP_* Concat H/4× w/4× 320 SPP

SPP ConvBn2d
[
128× 320× 3× 3

]
H/4×W/4× 32 Feat

32× 128× 1× 1

Table 3: Architecture of Feature Extractor

Input Layer Type Layer Description Output Dimension Layer Tag
H/S ×W/S × 128 SPPInput

SPPInput AveragePool H/S ×W/S × 128 SPPB1
SPPB1 ConvBn2d [32× 128× 1× 1] H/S ×W/S × 32 output

Table 4: Architecture of a SPPBlock.

hicles) as well as heavy-textured regions (e.g. bushes).

References
[1] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for

autonomous driving? the kitti vision benchmark suite.
In CVPR, 2012.

[2] M. Menze and A. Geiger. Object scene flow for au-
tonomous vehicles. In CVPR, 2015.

[3] A. Newell, K. Yang, and J. Deng. Stacked hourglass
networks for human pose estimation. In ECCV, 2016.

[4] Z. Yin, T. Darrell, and F. Yu. Hierarchical discrete dis-
tribution decomposition for match density estimation.
2019.

4325



Input Layer Type Layer Description Output Dimension Layer Tag
Input H/S ×W/S × F Input
Disp D ×H/4×W/4× 1 Disp

Input ConvBn3d [ 2F × F × 1× 3× 3 ] D ×H/S ×W/S × 2F E1_1
E1_1 ConvBn3d [ 2F × 2F × 1× 3× 3 ] D ×H/S ×W/S × 2F E1_2
E1_2 ConvBn3d [ 4F × 2F × 1× 3× 3 ] D ×H/2S ×W/2S × 4F E2_1
E2_1 ConvBn3d [ 4F × 4F × 1× 3× 3 ] D ×H/2S ×W/2S × 4F E2_2
E2_2 ConvBn3d [ 8F × 4F × 1× 3× 3 ] D ×H/4S ×W/4S × 8F E3_1
E3_1 ConvBn3d [ 8F × 8F × 1× 3× 3 ] D ×H/4S ×W/4S × 8F E3_2
E3_1 ConvTransposeBn3d [ 4F × 8F × 1× 3× 3 ] D ×H/2S ×W/2S × 4F D3
D3 ConvTransposeBn3d [ 2F × 4F × 1× 3× 3 ] D ×H/2S ×W/2S × 2F D2
D2 ConvTransposeBn3d [ F × 2F × 1× 3× 3 ] D ×H/S ×W/S × F D1

D1 Conv3d
[
2F × F × 1× 3× 3

]
D ×H/4×W/4× 1 Feat

1× 2F × 1× 3× 3

Feat SoftMax D ×H/4×W/4× 1 Score
Score Mul-Reduce Score * Disp H/4×W/4× 1 PredDisp

Table 5: Architecture of a Hourglass Block.
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