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Motivation Implicit Deformable Reconstruction Results
To truly scale 3D reconstruction algorithms, it would be ideal to learn from internet data Implicitly map a 3D point in the object space to the category-specific canonical space and CUBS-200-2011 ‘olor denotes Comespondence
(large image collections) in a manner which allows easy knowledge transfer across objects. learn the shape (as SDF field) in the canonical space.
Training: Learn 3D + Correspondences from single image collection of a category How to get the shape of an object, given its image ? What’s the SDF of point XYZ to the object’s surface ?
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x Dense multi-view camera Images SDF of XYZ to the object’s surface = SDF of X'Y’Z’ to the canonical surface SDF Representation
v/ Single-view image collections + segmentation masks + camera poses
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CMR SDF-SRN TARS (ours)

By learning the deformation field implicitly, the implicit deformation field have a strong
tendency to continuously deform the 3D points, leading to over-smooth shapes.

Inference: 3D Shape + Correspondences just from single image at test time
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Single Image

Single Image Input Image SoftRas SDF-SRN TARS (ours) InputImage  SoftRas SDF-SRN TARS (ours) InputImage SoftRas SDF-SRN TARS (ours)

_ Continuous Deformation Field Discontinuous Deformation Field ' '
Texture Transfer using learned 3D geometry and dense correspondences Pascal3D+ (Chairs & Alrplanes)
f = , Topologically-Aware Deformable Reconstruction N
A
Inspired by the kernel theory or level set theory, we lift the 3D canonical points to a ‘ !‘
Source textured mesh larget meshes Source textured mesh larget meshes higher-dimension by learning additional point features.
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Prior Work: Deformable Reconstruction 1 1 St RS Input Image =~ CMR  SDF-SRN  TARS  Inputlmage  CMR SDF-SRN  TARS
Additionally learning k point features (alongside 3D deformation field), we can recover Pix3D Chairs (Trained on Shaoenet
finer structural/ topological detalils. alrs (Trained o apenet)
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Perform well on categories w/ less  Fail to generalize to categories with  Fail to generalize to categories with
structural/ topological variations larger articulations/ deformations larger structural & topological variations
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